Noise-induced traveling waves in electroconvection

ホ ジョンフン Jong-Hoon Huh (許 宗焄)

Kyushu Institute of Technology,

Fukuoka Japan

(九州工業大学)

The 24th Int'l Conf. on Noise and Fluctuations, Vilnius Lithuania, June 20-23, 2017

Response of Dynamical Dissipative System (e.g., EC) to External Noise

Carr-Helfrich mechanism for ac-driven Electroconvection (EC) induced in nematic liquid crystals and a typical EC pattern (Williams domain)

What is Traveling wave (TW)?

$$\dot{A}_{\sigma} = \lambda_{\sigma}(R)A_{\sigma} - \tilde{\alpha}^{2}R\sigma_{a}^{eff}(\sigma_{\perp}\tau_{d})^{-1}A_{n}$$
$$\dot{A}_{n} = \frac{R\sigma_{\perp}}{\sigma_{a}^{eff}\tau_{d}} \left(\frac{C}{1+(\beta\Omega\tau_{q})}\right)^{2}A_{\sigma} + \lambda_{n}(R)A_{n}$$

M. Dennin, M. Treiber and L. Kramer, G. Ahlers, and D. S. Cannell, Phys. Rev. Lett. 76, 319 (1996).

$$\frac{dA_{\sigma}}{dt} = f(A_{\sigma}, A_n, R),$$
$$\frac{dA_n}{dt} = g(A_{\sigma}, A_n, R)$$

The WEM can be considered as an activator-inhibitor model for a Hopf bifurcation (if $\partial f / \partial A_n < 0$, $\partial g / \partial A_\sigma > 0$).

 A_{σ} : the amplitude of the local deviation of the conductivity A_n : the director amplitude $R(=V^2/V_c^2)$: a control parameter

Experiment

Important Parameters

EC in Liquid Crystals

> $\tau_{\rm d} = \frac{\gamma_1 d^2}{K_{33}} \sim 10^{-1} \,\mathrm{s}$: the director relaxation time

 $\tau_{\sigma} = \frac{\varepsilon_0 \varepsilon_{//}}{\sigma_{//}} \sim 10^{-3} \text{ s}$

: the charge relaxation time

External noise

by Ornetein-Uhlenbeck process $\blacktriangle \langle \xi(t) \rangle = 0$ $\blacktriangle C(t-t') = \langle \xi(t)\xi(t') \rangle$ $= \frac{Q}{\tau_N} \exp(-|t - t'|/\tau_N)$ external timescale $\tau_N = \frac{1}{2\pi f_c} \sim 10^{-6} - 10^{-3} \text{ s}$ timescale : the correlation time $\triangleright V_{\rm N} = d \sqrt{\langle \xi(t)\xi(t) \rangle} \sim 0 - 30 \,\mathrm{V}$: noise intensity

Previous study :noise-induced EC threshold problems + Instability Problem (Threshold Vc of EC)

Theory

✓ Kawakubo 81
for b > 0 (white noise-limit)

 $V_{\rm c}^2 = V_{\rm c0}^2 + bV_{\rm N}^2$

$$b = \frac{(1+\omega^2 \tau_{\sigma})}{\zeta^2 - (1+\omega^2 \tau_{\sigma})}$$

☑ Huh 2014

for *b* > 0, *b* < 0 (colored noise)

$$V_{\rm c}^2 = V_{\rm c0}^2 + b_{cor} V_{\rm N}^2, \quad b_{cor} = b(1 - h \frac{\tau_{\rm N}}{\tau_{\sigma}^n})$$

Experimental results for TW (1)

Fig.1 EC-threshold V_c , wave number k_c , and Hopf frequency f_H as functions of ac frequency f. For $f > f_{TW}$ (~160 Hz), TW arises as a primary instability.

"Traveling waves and localized waves of electroconvection in external multiplicative noise," Jong-Hoon Huh, PRE95, 042704 (2016).

Fig.2 Measurement of Hopf frequency $f_{\rm H.}$ Spacetime map was obtained by successive arrangement of a one-dimensional image arbitrarily selected in TW with an identical time interval.

Experimental results for TW (2)

Fig.3 Noise-induced traveling waves. Increasing noise intensity V_N , unique pattern evolutions are observed: $SW \rightarrow TW1 \rightarrow TW2 \rightarrow TW3$ (for $f < f_{TW}$), and $TW1 \rightarrow TW2 \rightarrow TW3$ (for $f > f_{TW}$).

Fig.4 Noise-induced traveling waves: SW (stationary wave, $f_{\rm H} = 0$), TW1 (traveling wave with defect motions), TW2 (without defects), TW3 (localized TW).

Experimental results for TW (3)

Fig.5 Comparison between the WEM prediction and experimental results (with different noise intensities).

- **The WEM works well at low** V_N and **low** V. See green regions in Figs.5 and 6.
- The WEM is inapplicable to high V_N (due to unknown noise effects) and high V (due to defects).

Fig.6 Dependence of Hopf frequency $f_{\rm H}$ on a reduced ac voltage $\varepsilon = (V^2 - V_c^2)/V_c^2$ in the absence and presence of noise. TW ($f_{\rm H} \neq 0$) smoothly changes into an SW ($f_{\rm H} = 0$); however, this SW is completely different from the SW around $\varepsilon = 0$ (in Fig.4). See each space-time map for various ε .

Discussions and Summary (1)

For low noise intensities ($V_{\rm N}$ < 15 V), the WEM for TW works well.

→ See Fig.1 and Fig.5.

For high noise intensities ($V_N > 15$ V), the WEM is inapplicable to TW.

 \rightarrow See Fig.3 and Fig.5.

 V-dependent Hopf frequency shows unexpected behavior (Fig.6) due to the motion of defects; the role of V should be examine in defect-free EC.
 > See the proceeding of ICNF2017, and "Electroconvection in in-plane switching-mode cells" (submitted to PRE.

Fig.7 **Defect-free EC** in quasi-one dimensional cells prepared by employing the in-plane switching mode.

Discussions and Summary (2)

• What happens in the WEM under external noise ?

$$\dot{A}_{\sigma} = \lambda_{\sigma}(R)A_{\sigma} - \tilde{\alpha}^2 R \sigma_a^{eff} (\sigma_{\perp} \tau_d)^{-1} A_n$$

$$\dot{A}_{n} = \frac{R\sigma_{\perp}}{\sigma_{a}^{eff}\tau_{d}} \left(\frac{C}{1 + (\beta\Omega\tau_{q})}\right)^{2} A_{\sigma} + \lambda_{n}(R)A_{n}$$

←Noise may activate conductivity (σ)-related parameters (e.g., $\lambda_{\sigma}, \sigma_{\perp}, \sigma_{a}^{e\!f\!f}$) due to noise-driven random oscillation of space charges in EC.

Colored noise can change the present results?

e.g., V- and V_N -dependent Hopf frequencies ? (To understand this approach, see the previous study)

Our future study

Acknowledgement

This study was supported by JSPS KAKENHI (Grant No. 15K05215).

Pattern formations in electroconvection by colored noise

Yoshimitsu Yano (矢野 芳光) Kyusyu Institute of Technology, Fukuoka, Japan (九州工業大学)

24th International Conference on Noise and Fluctuations Vilnius, Lithuania – June 20-23, 2017

Introduction (**Mechanism of Electroconvection** (**EC**)

- **Q**. What's Liquid Crystals (LCs)?
- A. state between liquid and solid crystals
 - fluidity of liquid and anisotropy of solid crystals
- **Q**. What is the merits of EC?
- A. •easy to visualize
 - •easy to control (by electric parameter)
 - •efficiency of experiments (fast response)
 - abundance of convection pattern (due to anisotropy)

Nonequilibrium system Internal Convention Input ≠ Output

If voltage excess thresholds,

Electroconvection is occurred

Williams domain (1963)

Introduction² Spatio-Temporal Plot (STP) and Experimental Setup

external multiplicative noise N(t)Nosie intensity: $V_N = d\sqrt{N^2(t)}$ [V] (Here, *d* is the thickness of sample cells) T : measurement time[s]

Experimental Results (1) Measurement of Threshold by Colored Noise

 $f_{\rm c}$: cutoff frequency

 $\rightarrow V_{c}$ is monotonically decreased (b < 0) noise effect \rightarrow destabilizer

 $\rightarrow V_{c}$ is monotonically increased (b > 0) noise effect \rightarrow stabilizer

 $\rightarrow V_c$ behavior cannot be fitted by the theoretical formula below.

Experimental Results 2 Measurement of Light Intensity

Experimental Results ③ Depending on Temperature on STP

 \bigcirc

 $V_{\rm N}[V]$

7.8

X = 640 pixel = 0.421 mm

In a lower temperature, Different pattern is observed. It is called "Traveling Wave (TW)"

25°C 28°C

Pattern formations depending on temperature V = 6.68V, $V_{\rm N} = 17.8$ V, $f_{\rm c} = 570$ Hz, for 660 s

Taking dissociation and recombination into consideration Also, impurities and dopants are included This mdoel meets the condition of "Hopf Bifurcation"

* Hopf Bifurcation : vibration of sol.

 $560 T [60 \times 11s]$

 $(f_c = 570 \text{Hz}, 22^{\circ}\text{C})$

Weak Electrolyte Model (WEM)

: LC's molecules

Discussions ~possible explanation of ISR~

•ISR is induced by specific cutoff frequencies and intensities $V_N = 4 \sim 14 \text{ V}, f_c = 500 \sim 570 \text{ Hz}$

• Theoretical equation $V_c^2 = V_0^2 + bV_N^2$ should be modified.

Summary

This work was partly supported by JSPS KAKENHI (No.15K05215)